Rain Initiation Time in Turbulent Warm Clouds

نویسندگان

  • GREGORY FALKOVICH
  • MIKHAIL G. STEPANOV
  • MARIJA VUCELJA
چکیده

A mean field model is presented that describes droplet growth resulting from condensation and collisions and droplet loss resulting from fallout. The model allows for an effective numerical simulation. The numerical scheme that is conservative in water mass and keeps accurate count of the number of droplets is applied, and the way in which the rain initiation time depends on different parameters is studied. In particular, it is shown that the rain initiation time depends nonmonotonically (has a minimum) on the number of cloud condensation nuclei. Also presented is a simple model that allows one to estimate the rain initiation time for turbulent clouds with an inhomogeneous concentration of cloud condensation nuclei. It is argued that by overseeding even a part of a cloud by small hygroscopic nuclei one can substantially delay the onset of precipitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding the Importance of Microphysics and Macrophysics for Warm Rain in Marine Low Clouds. Part II: Heuristic Models of Rain Formation

Two simple heuristic model formulations for warm rain formation are introduced and their behavior explored. The first, which is primarily aimed at representing warm rain formation in shallow convective clouds, is a continuous collection model that uses an assumed cloud droplet size distribution consistent with observations as the source of embryonic drizzle drops that are then allowed to fall t...

متن کامل

Growth of Cloud Droplets in a Turbulent Environment

Motivated by the need to resolve the condensation-coalescence bottleneck in warm rain formation, a significant number of studies have emerged in the past 15 years concerning the growth of cloud droplets by water-vapor diffusion and by collision-coalescence in a turbulent environment.With regard to condensation, recent studies suggest that small-scale turbulence alone does not produce a signific...

متن کامل

Growth of Cloud Droplets by Turbulent Collision–Coalescence

An open question in cloud physics is how rain forms in warm cumulus as rapidly as it is sometimes observed. In particular, the growth of cloud droplets across the size gap from 10 to 50 m in radius has not been fully explained. In this paper, the authors investigate the growth of cloud droplets by collision– coalescence, taking into account both the gravitational mechanism and several enhanceme...

متن کامل

Remote Sensing of Cloud and Precipitation of Warm Clouds by Passive and Active Sensors aboard A-train Satellite

Though warm rain from low-level liquid clouds contributes significantly to the global precipitation and water cycle, it has been missed or underestimated by satellite remote sensing techniques. IR techniques miss all warm rain because they rely on cloud top temperature. Over land, passive microwave techniques miss all warm rain because they rely on ice scattering at high frequency channel. Over...

متن کامل

Interactive comment on “Aerosol concentrations determine the height of warm rain and ice initiation in convective clouds over the Amazon basin” by Ramon Campos Braga et al

Reviewer’s text: A strength of this paper is the presentation of cloud in-situ observations that addresses the question of how convective clouds are influenced by changing the concentration of aerosols. The authors have determined that the height of rain initiation given by D_i is approximately 5 * the number concentration of cloud droplets at cloud base, N_d. This type of study is needed for d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004